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ABSTRACT

Bubble dynamics in vibrated liquids is studied both analytically and
experimentally for normal and simulated low gravity conditions. Attention
is focused on migration of bubbles to various locations within the tank when
axisymmetric dynamic pressure conditions exist. A theory is developed to
predict finite size bubble behavior, including natural frequencies of coupled
axisymmetric modes of the system as well as average induced buoyancy force
imparted to the bubble through the vibration. Calculated results are compared
with experimental observations for a captive bubble in a vertically oriented
tank and with results of a previous theory in which only small bubbles are
allowed. It is found that small bubble theory is no longer valid for bubble-
to-tank radius ratios greater than 0, 05.

Additional experimental observations are performed in a horizontally
oriented tank in which a captive bubble experiences zero gravity force in the
horizontal direction. Longitudinal excitation of the system in this condition
readily causes bubble migration to various points in the tank, even for very
low acceleration inputs. Similar bubble behavior is displayed under random
input conditions. It is concluded that low noise level accelerations can cause
bubble migration under orbital conditions.
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LIST OF SYMBOLS

Inner radius of tank wall
Middle -surface radius of cylindrical tank wall

Cross-sectional area of liquid at a given elevation in the tank
(excludes area of bubble)

Unperturbed equilibrium radius of bubble

Effective sonic velocity through section of system that does not include
the bubble

Sonic velocity in liquid alone

Effective sonic velocity through section of system that includes the
bubble

Bubble depth from liquid surface

Elastic modulus of tank

Induced buoyancy force on bubble under sinusoidal excitation
Average induced buoyancy force on bubble under random excitation
Steady longitudinal acceleration

Standard acceleration of gravity

Wall thickness of tank

Liquid depth

Pressure at a given cross section in the cylindrical tank (assuming
a plane-wave distribution)

Static ullage pressure in tank
Mean static pressure inside bubble

Longitudinal volumetric flow of liquid through a cross section A
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Radial location of bubble

Time

Longitudinal velocity component of liquid
Unperturbed equilibrium volume of bubble
Radial displacement of tank wall

Axial coordinate relative to tank bottom
Excitational displacement amplitude

Denotes a nondimensional variable

Denotes the amplitude of an oscillatory variable
Ratio of specific heats for bubble gas

Pulsating displacement of spherical bubble (Fig. 1b)

Eigenvalue giving i-th natural frequency of combined liquid-bubble-
elastic tank system

Axial coordinate relative to bubble center for unperturbed bubble
(Fig. 1b)

Axial coordinate relative to bubble center for perturbed bubble (Fig., 1b)
Mass density of liquid

Azimuth angle in bubble (Fig. 1b)

Excitational frequency

Central excitation frequency for 20-cps random bandwidth

Natural frequency for i-th axisymmetric mode of combined system

Natural frequency of bubble
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I. INTRODUCTION

The presence of bubbles in liquid propellants of space vehicles is
well recognized to be a potential hazard to high-speed turbomachinery and a
possible cause of excessive thrust fluctuations. Thus, it is essential that
pure, bubble-free propellant be supplied to rocket engines at all times,
including restarts from orbit as well as during launches from rest positions.

Because of the physical nature of cryogenic liquids and the space
environment, the formation of bubbles within the body of liquid propellants
occurs readily through several mechanisms. Normal boiling, liquid surface
agitation, and nucleation caused by reduction of ullage pressure during vent-
ing operations are some of these mechanisms. The dynamic behavior of
bubbles subsequent to their formation is then what determines whether they
will vent into the ullage or will be caught into the outlet flow stream of the
propellant during the boost phase, or whether they will vent or collect at
undesirable locations within the tank while in the low gravity environment of
the orbital phase.

Neglecting temperature gradient effects, it appears that there are
three significant forces that influence the dynamic behavior of moving
bubbles--the steady acceleration buoyancy, the drag force resulting from
liquid viscosity, and an average induced buoyancy force which results from
pressure oscillations within the liquid. Of these three, perhaps the vibra-
tionally induced buoyancy force is currently the least understood.

Although the dynamic behavior of bubbles has long been the subject
of numerous studies, it has only been within the last several years that
bubble dynamics in space vehicle applications has been considered. One of
the earlier reviews from this point of view was given by Dodge [1]T, who
discussed all three forces affecting bubble motions. A much more recent
discussion of bubble behavior under steady gravity and drag forces only has
been given by Fritz [2], while Kana [3] has recently discussed how bubbles
can influence the overall longitudinal vibration of a liquid-elastic tank system
through their effect on the internal pressure distribution. These three
papers have extensive reference lists on the subject. The relationship of
bubble dynamics to overall liquid propellant problems has been discussed by
Dachs [4]. He refers to the bubble coalescence phenomenon as CILIVIC
(coalescence in liquids in a vibrating column).

T Numbers in brackets refer to the references cited at the end of the report.



Several investigations have been conducted to determine the effects
of steady gravity and vibrational forces only. Although a number of investi-
gators had observed peculiar behavior of bubbles and bubble clusters in
vibrated tanks, Bleich [5, 6] was one of the first to correlate experimental
observations with a theory developed for bubbles that are small relative to
the tank dimensions. The results of this early investigation still appear to
be one of the most useful methods of estimating bubble behavior, as will be
shown later in the present report,

Kana and Dodge [7] found good correlation between the resutts of
experimental observations and the predictions of Bleich's theory for small
bubbles in elastic cylinders. It was found that the vibrational amplitude
required to move small bubbles against a 1-g steady buoyancy was in general
relatively large, but could be quite small in the vicinity of the natural axi-
symmetric modes of oscillation in the liquid-tank system. It was also shown
experimentally that the bubbles tended to behave isothermally, rather than
adiabatically. This result coincided with an earlier theoretical investigation
of Plesset and Hsieh [8]. Subsequent to the work of Kana and Dodge [7],
similar investigations were conducted by Fritz, et al. [9] and Schoenhals
and Overcamp [10].

Although all of the previous work on bubble dynamics in vibrated
liquids has been concentrated on the case of bubbles that are small relative
to the tank dimensions, it has amply been shown that the oscillatory pres-
sure distribution within the liquid is an inherent part of the problem. That
is, bubble motion is influenced by both the amplitude and gradient of the
pressure field at the bubble location. Thus, a variety of bubble behavior is
possible, depending on the type and frequency of excitation that the system
experiences. This situation is further complicated by the fact that the com-
pliance of the bubble itself can influence this pressure distribution if its size
becomes significant relative to the tank dimensions.

Kana [3] has pointed out that an elastic cylinder containing liquid can
respond in several forms when excited by longitudinal vibration. However,
only two forms of the response, one linear and one nonlinear, appear espe-
cially significant to bubble dynamics in that they can cause large axisym-
metric pressure responses for relatively small longitudinal inputs. For the
present, we shall consider only linear pressure fields. Several investigators
recently have studied these linear axisymmetric modes of a longitudinally
excited cylinder containing bubble-free liquid. An extensive reference list
of this work appears in Reference [3]. A good knowledge of these modes of
oscillation in the liquid-tank system is essential in that they form the excit-
ing mechanism for the limiting case of small bubbles in a given system.




In all of the above work on bubble dynamics, little recognition has
been given to the possible problems of bubble behavior in a low gravity
environment or the effects of finite bubble size relative to the tank dimen-
sions. The purpose of the present work is to delve further into these two
aspects of the bubble dynamics problem. Possible bubble problems in a low
gravity environment will be emphasized by showing that very small vibra-
tional forces, such as can be induced by on-board support equipment in
orbit, can move bubbles about, perhaps causing them to collect in undesir-
able locations, when only a weak steady buoyancy force is present. Thus,
the average vibrational force will be specifically investigated by considering
it to be completely independent of drag forces and only weakly dependent on
gravity forces. Low gravity effects will be simulated by using counterbal-
anced captive bubbles, and it will be shown that random excitation, as well as
sinusoidal excitation, has a strong influence on the bubble behavior. Only
linear pressure responses under longitudinal excitation will be considered.
A theory is developed for finite size bubbles, but it is shown by comparison
that the much simpler theory of Bleich [5, 6] can be used for reasonable
approximations of bubble behavior for smaller bubble sizes, Although in
the present work the emphasis is on bubble behavior in low gravity environ-
ments, it is recognized that the results are also applicable to normal gravity
conditions.



II. ANALYTICAL CONSIDERATIONS

Although this section includes an analytical development leading to the
prediction of vibrational forces induced on finite size bubbles, the entire work
is basically experimental, so that it emphasizes the techniques developed to
simulate bubbles in a low gravity environment. The vibrational force induced
on bubbles will be studied for longitudinal excitation both in a vertically
oriented tank having a free surface and in a horizontally oriented tank without
a free surface. However, the theory will be applied only to the vertically
oriented tank. Therefore, this section begins with a discussion of pertinent
variables involved in the physical system of the vertically oriented tank and
the equations resulting from a dimensional analysis of them. Subsequently,
the theoretical analysis of these variables then follows.

Dimensional Analysis

In the study of the behavior of bubbles under the influence of both steady
buoyancy and vibrational forces in a vertically oriented and vibrated tank,
ultimately the experiments can conveniently be separated into the determina-
tion of two independent variables. First, for a given bubble located at some
point in the liquid in a specified elastic tank, one must determine the natural
frequencies of the axisymmetric modes of oscillation of the combined system.
The relationship of the exciting frequency to these natural modes then has a
profound influence on the induced vibrational force experienced by the bubble
in the forced system.

Thus, a coupled natural frequency parameter can be expressed as

2
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where the use of the equivalent sonic velocity C, implies the existence of a
plane wave pressure distribution in the liquid-elastic tank column when a
bubble is not present. This approximation has been shown to be valid [11]

for liquid depths only in the range H/a > 2 along with the range of other varia-
bles which we will be considering. Upon determining the natural frequency
wgi of the system, then, for the forced vibration problem, the average induced
vibrational force can be expressed as:
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Equations (1) and (2) show all the variables considered pertinent in the present
study. It is ovbious that viscous and surface tension effects are not included,
and the force exerted on the bubble in a static position will be studied. The
force parameter given in Equation (2) is the ratio of the induced vibrational
force to the static buoyancy force resulting from a 1-g, axial acceleration.

Finite Size Bubble Theory

Natural Frequencies of the System. If the circular cylindrical elastic
shell is considered to be a membrane [12], its governing equation can be
written as

Wt _w= _P (3)
2 p._h
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while the bubble equation [5] can be written as
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Equations (3) and (4) are the governing equations for the shell and
bubble, respectively. It is further necessary to have such an equation govern-
ing the liquid. For this analysis, we shall apply quasi-one-dimensional equa-
tions to the liquid region between the bubble and the shell (this assumption has
already been made for those regions where no bubble exists, as was indicated
above in the use of the equivalent sonic velocity Cg). The tank coordinate
system is shown in Figure la, while the bubble coordinate system is shown in

TIt should be noted that surface tension effects are not included in this
expression.
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Figure la. Tank coordinate system
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Figure 1b. Bubble coordinate system



Figure 1b. Analogous to Tarantine [13], the average of the linearized con-
tinuity equation yields
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where q is the volumetric flow f udA, and A is the cross-sectional area. For

theoretical purposes, we will consider only the case of rg = 0, where the
bubble is located on the centerline of the tank. The development of Equa-

tion (6) appears in the Appendix. Similarly, the linearized momentum equation
is

= . PL 99
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Now, assuming the existence of periodic motion and using Equations (3)
and (4) to eliminate w and Ag from Equation (6), we have
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It may be noted that C p can be considered an effective sonic velocity in the
above range of §* (i.e., in a cross section that cuts through the bubble), and

that outside this range it becomes

c2
2_ =z 2= S
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the effective sonic velocity in an elastic tank in which no bubble is present.
If QZB <w? and Qp - w? is small, then Ceop becomes imaginary, and it can no
longer be interpreted as an effective sonic velocity.

Equations (7) and (8) can be combined to give the nondimensional

equation
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where
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The boundary conditions are

p*¥ =0 at x¥ = H/a

and
Ip % xowz
—E:=- cos wt at x¥* =0
ax* g6

In order to solve Equations (11) for the pressure p%*, it is necessary
to use a numerical solution. Details of such a numerical solution are given
in the Appendix. In essence, Equations (11) reduce to a matrix equation

{ta1 - 2181} (P = [c) (12a)f

f[A], [B], [C] are matrices, the elements of which are given in the Appendix.
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where

The natural frequencies of the combined system are then obtained from the
determinant

l[A] -\2[B]| =0 (12b)

The lowest eigenvalue is determined by repeated linear interpolation of the
determinantal equation. Standard eigenvalue subroutines are not applicable
since [B] depends on the frequency w, thus on A\.

Average Force on Bubble. In view of the variables shown in Figure lb,
the time average of the vertical component of force that results from the inte-
gration of pressure over the bubble surface can be expressed as

F=-2n ,j( p(E )b + AB)2 sin y cos x dx
0

The evaluation of this integral is given in the Appendix. The final nondimen-
sional result for the induced buoyancy force is

F 3 a -~ . ~ v
PLEoVe 4 p2 * - * A 13
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where
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A¥ B _ 2 1 (13
(- 3)
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T
* 1 -
P = - f p* s1nde (13C)
1 2 )

Here, Vo is the equilibrium volume of the bubble, and it is understood that
(") represents the amplitude of an oscillatory variable. The evaluation of
Equations (13) must be carried out using a numerical process. The formula-
tion of this process is given in the Appendix.
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Small Bubble Theory

For the case of bubbles that are small relative to the tank dimensions,
the above theory must necessarily reduce to that of Bleich [5] as applied to a
quasi-one-dimensional (plane wave) approximation [7]. Thus, Equation (1la)
reduces to the nondimensional wave equation, and, as given in Reference [7],
natural frequencies of the closed-open elastic tank containing liquid can be
approximated by

w .H T
81 =(2i-1) > (14)

e

Then, in order to determine the induced vibrational force on the small bubbles,
from Equations (13), we have

) ) ., b op*
(P )ék_ b/a (p )gsz - _b/a— 2 a ag*
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and the average nondimensional induced buoyancy force is
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which is the equation developed in Reference [7], providing that we introduce
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Upon using the one-dimensional wave equation to obtain the pressure
and pressure gradient as was done in Reference [7], and using Equation (5),
Equation (15) can be expressed in terms of the variables in Equation (2) as
follows:

11



This expression gives a useful relationship for estimating the average induced
buoyancy force for small bubbles in any gravity environment. It is desirable
to determine the bubble parameters at which the results predicted by Equa-
tions (13) begin to deviate from those predicted by Equation (16).

In order to study the interaction of the induced average buoyancy force
given by Equation (16) and a steady, but small gravity force, it is convenient
to combine the two forces so that positions of bubble equilibrium (stable or
unstable) are determined in a vertically vibrated tank. This has already been
done for large steady gravity forces in Equation (19) of Reference [7]. By

changing the variables in this equation to include all those given in Equation (2)
of the present report, we have

( H P T1/2
BRI )

Zo” J oo, p A% (17)
= —
o 2 sin (Tr —E —“—)—)
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Equation (18) gives the input acceleration required to cause a small bubble to
be in equilibrium at a given depth dg in a vertically oriented and vibrated
elastic tank. It should also be noted that in this expression an assumption
has been made that

13



III. EXPERIMENTAL APPARATUS

The apparatus used for the experiments of the present study is shown
in the photographs of Figures 2 through 4. Basically, the same apparatus was
used for both the vertically and horizontally oriented tanks, except for the
bulkheads on the tank and some parts of the instrumentation. Similar types of
counterweighted captive bubbles were used in both cases, and water was used
for the model liquid.

Vertical Orientation

Figure 2 shows the vertically oriented tank containing a captive bubble.
The Lucite tank (E = 800, 000 psi) had a mean diameter of 25,1 cm, was
50.3 cm long, and had a wall thickness of 3.18 mm. Thus, the inner radius
was 12.4 cm. All vertical tests were run with a water depth of H/a = 3. 69,
The tank is shown with its lower flange mounted on a rigid flat bottom that is
bolted directly to the shaker armature,

The captive bubble is made of a thin rubber balloonwith an air valve
at the bottom. Thus, the amount of air in the balloon could be adjusted.
The balloon was counterweighted to be exactly neutrally buoyant in a 1-gg
field at the depth that force measurements were taken. This balloon-
counterweight system was attached to a thin cantilever beam force transducer
which was fixed to a rod that extended down into the tank, The force trans-
ducer had one semiconductor strain gage on top and one on the bottom of the
beam near its root. High sensitivity of the semiconductor gages and associ-
ated instrumentation allowed force readings to within about 10 dyn. Pres-
sure distributions in the liquid were measured by means of a miniature
pressure transducer mounted in the 3.8-mm diameter rod that extends into
the left side of the tank in Figure 2. Referring to Equations (1) and (2), the
tests for the vertically oriented tank were conducted so that the following
parameters were held constant unless otherwise noted on the results:

2
p C
H_ 3. 69, o - 3gs5.8, —c;-:1.67><1o6
a pLgoa go
C
v=1.0, —=0.184, £ =10
o Eo

Other independent parameters in Equations (1) and (2) were varied in order to
determine their influence on the natural frequencies and average induced
buoyancy force,

15



Figure 2. Captive bubble in vertical tank
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Figure 4. Captive bubble in horizontal tank
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A photograph of the overall apparatus is shown in Figure 3, while
simplified diagrams of the instrumentation are shown in Figures 5 and 6.
It can be seen that the instrumentation for sinusoidal excitation is consider-
ably simpler than that for random excitation. In both cases, the force signal
is filtered to remove dynamic components so that only the desired average
signal could be read on a DC digital voltmeter. The dynamic signal did not
represent the true dynamic buoyancy force since some dynamic signal was
generated by the liquid pressure acting on the beam alone; however, the
average force was that from the bubble only.

It can be seen from Figure 6 that a somewhat restricted form of ran-
dom excitation was used. That is, a relatively narrow band (3-db bandwidth
of 20 cps) of random signal was used as the excitation for this case. This
particular form of random signal was used since the average bubble force
that it produced could more directly be compared with that obtained from
the sinusoidal excitation when the center frequency of the bandwidth was set
equal to the frequency at which sinusoidal data were obtained. Input accel-
eration was measured in rms-g's by using the instrumentation indicated.
The excitation signal was applied for 25 sec and integrated to obtain the rms
value. The force signal, which varied somewhat during this time, was
averaged by sight reading of the digital voltmeter and oscilloscope. The
25-sec averaging period was determined to be adequate to produce a 95-
percent confidence level in the measured values.

Horizontal Orientation

A photograph of the horizontally oriented tank has been shown in

Figure 4. The cylinder which formed the center portion of this tank was the
same as that previously described; however, here it was fitted with Lucite
hemispherical bulkheads on both ends. These bulkheads were blown from
heated 3.18-mm thick Lucite sheets, and varied in thickness to 1.59 mm

at the center after formation. Horizontal longitudinal excitation was pro-
vided through a circular bracket attached to one flange of the tank, Four
vertical supports were used to absorb the deadweight of the entire system.

For this orientation, the captive bubble was counterweighted to where
it was just neutrally buoyant onthe centerline of the tank. This reduced
friction at the contact point between the weights and the tank wall. Thus,
the bubble was free to move under any horizontally applied force. The weights
were made of steel so that an external bar magnet could be used to move the
bubble to different positions in the tank. Of course, all adjustments in
bubble size and counterweights had to be made while one end of the tank was
open and setting vertically,

18
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Figure 6. Sketch of instrumentation for random excitation

20

93!




As can be seen from Figure 4, a pressure probe similar to that pre-
viously described was used for measuring pressure distributions., Here,
the probe was straight and was inserted into the tank through a rubber plug
at the center of the free-end bulkhead. Force measurements were not
taken on the captive bubble since this would have required a considerably
more elaborate force transducer design because of the inaccessible location
of the bubble for this condition. However, a qualitative indication of the
force could readily be obtained by visually observing how rapidly the bubble
moved from a given initial position for given excitational conditions.
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IVv. THEORETICAL AND EXPERIMENTAL RESULTS

Vertical Orientation

Natural Frequencies of System., The importance of the axisymmetric
modes of oscillation on bubble dynamics in a longitudinally excited tank has
already been emphasized. Figure 7 shows the pressure distribution for the
first two of these modes as they occur for bubble-free liquid in the present
experimental system. It may be anticipated that the presence of a small
bubble at various axial locations in the tank would cause only insignificant
distortions in the shape of this pressure as well as insignificant changes in
the natural frequency, whereas larger bubbles would cause marked changes
in both. Evidence of the influence of both bubble size and axial position on
the natural modes of the system containing a bubble is shown in Figures 8
and 9.

Figure 8 shows both theoretical and experimental values of natural
frequency for the first mode only. The theoretical values obtained for the
two larger bubbles were computed numerically from Equation (12) using
twenty increments (N = 20) across the bubble, while the small bubble theory
values were obtained from Equation (14). It may be recalled that small
bubble theory assumes the existence of a plane water-hainmer wave
that is not influenced by the presence of a bubble. Thus, as would be
expected, only the experimental values for the smallest bubble correlate well
with these values, For the two larger bubbles, it can be seen that good cor-
relation is obtained with the finite bubble theory, with the best correlation
occurring for the largest bubble. For the smallest bubble, numerical results
from the finite bubble theory involved an error of about 20 percent, and, in
one case, it failed to converge within thirty iterations. In view of this trend,
it is believed that the discrepancy results principally from the form [Eq. (5)]
of the theoretical coupled bubble frequency (2 g) used in computing the
theoretical frequency (wgyj) of the combined system. More accurate results
probably could be obtained by including surface tension terms (particularly
for a captive bubble made from a rubber balloon). Use of a smaller mesh
size in the numerical process probably would also improve the results.

A similar dependence of natural frequency on bubble size and axial
position is shown in Figure 9 for the second mode. No theoretical results
were computed for this mode. It is obvious from the results for both modes
that the concentrated compliance of a bubble produces the most significant
change in frequency when it is located near an antinode of the pressure dis-
tribution of a given mode. Although the shape of the pressure wave was not
determined with a bubble present, it would be expected that the most distor-
tion would occur with the bubble at these locations; with the bubble near a
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Figure 7. Pressure distribution for first two axisymmetric modes
in vertical tank without bubble
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Figure 10. Variation of first mode natural frequency with radial
position of bubble in vertical tank
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node, the pressure wave for the first two modes would look essentially like
those in Figure 7. These results show that a bubble size of about b/a = 0,05
is the limit above which the small bubble theory no longer gives a good
approximation to the natural frequency of the system, while the finite bubble
theory does not appear to give useful results below this limit.

The data in Figures 8 and 9 were all obtained for bubbles located
along the central axis of the cylindrical tank. The effect of an eccentric
bubble position on natural frequency is shown for the first mode only in
Figure 10, Of course, the values at rB/a = 0 correspond to values from
Figure 8. Only the largest bubble appeared to cause significant change in
natural frequency as the bubble radial position was varied. The experimental
data were taken only for points where the bubble did not touch the wall of the
tank,

Bubble Force for Sinusoidal Excitation. Theoretical and experimental
correlation for the average induced buoyancy force on a medium sized bubble
is shown in Figure 11 for several bubble depths. Input acceleration was held
constant, while frequency was varied. The theoretical results are based on
a numerical solution of Equations (13), It can be seen that good agreement is
achieved, except at higher frequencies, for the smallest bubble depth. At
this point, the theoretical coupled natural frequency [Q g given by Eq. (5)]
of the bubble itself influences the results. Apparently, this natural frequency
never occurred in the experimental system at the predicted value. It has
been mentioned that including surface tension effects probably would improve
the results. This may not be surprising since the theory assumes the pres-
ence of a pure gas bubble, and the captive bubble, having been made from a
rubber balloon, could at best only approximate the assumed form and would
include grossly exaggerated surface tension effects because of the elasticity
of the balloon. The trend of the data, which shows greater discrepancies
for converging bubble frequency and system frequency, is consistent with
that shown in Figure 8.

The marked influence of the bubble mode on the induced buoyancy force
as indicated by the theoretical curve in Figure 11 does not appear to occur
experimentally. However, the effect of the coupled axisymmetric mode of
the combined system is vividly displayed by the peak which occurs at the
natural frequency for this mode. It should be emphasized that the force
- parameter is based on a 1-g, steady acceleration, and, although the indicated
values are small, they can be quite significant under certain conditions, as
will be shown in the subsequent figures,

Additional experimental data for induced buoyancy force are shown in
Figure 12 for the same bubble and depths indicated above. However, here
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each curve is for a fixed input frequency, while input acceleration is varied.

It is interesting to note that each curve appears to be a parabola of some form.
Further, negative forces are experienced for excitational frequencies beloww/wol =
1. 0,while positive forces canbe experienced for frequencies above this, depending on
the depth of the bubble. These results clearly indicate the influence of the
direction of the pressure gradient on the direction of resulting average force.
Damping in the system results in the w/wy] = 1.0 curve not exactly coinciding
with the negative ordinate axis. It should be emphasized that, in each part

of Figure 12a, b, or c, the ratio w/wol is based on the first mode natural
frequency corresponding to the bubble depth for that figure. Thus, w| varies
from one depth to the other, as indicated in the middle curve in Figure 8.

It now becomes pertinent to determine the range of bubble sizes over
which the small bubble theory will give a reasonable approximation to average
induced vibrational force. For this purpose, a comparison of results pre-
dicted by Equation (16) with experimental data is shown in Figure 13, Here
also, as in Figure 8, it can be seen that a bubble size of about b/a = 0.05 is
the limit, beyond which the small bubble theory no longer gives a good approxi-
mation to the bubble behavior, The downward curvature of the theoretical
curves is a result of the coupled bubble resonance, mentioned previously.
Again, it can be seen that no such behavior occurred experimentally. It may
be noted that, if the assumption w << Q pg is made in Equation (16), then the
force is independent of bubble size, and the results from the small bubble
theory become a series of horizontal straight lines, each passing through its
respective value at b/a = 0 in Figure 13, Thus, an even better correlation
with the experimental results would be achieved up to a bubble size of about
b/a = 0.2 for the cases shown. This result is consistent with the previous
comments regarding surface tension effects.

Several cautions should be exercised in interpreting the results
indicated in Figure 13. The form of captive bubble used for the experiments
undoubtedly influences the results to some presently unknown extent. One
indication of this influence is the fact that a value of ¥ = 1.4 rather than
¥ = 1.0 had to be used to compute the theoretical curves in order for the
results to fall near each other. This, of course, is contrary to what has
been determined in previous studies, as was mentioned in the introduction,
However, as has been mentioned, the balloon added stiffness to the bubble,
and increasing the factor ¥ would tend to allow for this increase. Further,
data of this type should be compared over a wider range of frequencies
before a complete confidence can be given to the conclusions that the figure
points toward. However, it is felt at the moment that a bubble size of b/a <
0. 05 probably is a reasonable limit for the application of the small bubble
theory. '
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In order to get some idea of the amplitudes of input acceleration that
can influence bubbles in a low gravity environment, numerical results based
on Equation (18) are shown in Figure 14, The various fixed parameters were
chosen as typical for a prototype system in earth orbit, and excitational fre-
quencies are below and in the vicinity of the first natural mode of the system
(6 = w). For a given curve at a given depth, all bubbles will rise for input
accelerations below the curve, and will sink for accelerations above the curve.
Thus, bubbles may collect at various depths, depending on the frequency of
excitation., It can be seen that very low input accelerations are required to
move the bubbles about. Although a factor of ¥ = 1.4 has been used in com-
puting these results, they are nearly the same for v = 1.0 in this case, as
can be seen from Equation (18). In Reference [7], a similar plot has been
given for bubble behavior in a 1-g5 environment,

Bubble Force for Random Excitation. Average induced buoyancy
force measured under random excitation is shown in Figure 15 for other con-
ditions that were similar to those in Figure 12, In this case, however, the
acceleration is rms - go's, and the frequency parameter w/wol is based on
the center of the 20-cps random bandwidth excitation, Further, the measured
force in this case continued to fluctuate randomly, and an average of this
fluctuation was measured, whereas the average force assumed a steady
value for pure sinusoidal excitation. In general, it can be seen that, qualita-
tively, similar results are displayed in the bubble behavior, even under ran-
dom excitation. An important consideration, of course, is that random
excitation does not necessarily produce random response, as is the case
here where a definite average force appeared. It may also be suspected that
the pressure response in the system itself acts as a mechanical filter,
favoring those frequencies near the natural modes of the system. The
responses at these frequencies then have the more pronounced effect on the
bubble behavior.

Horizontal Orientation

As was mentioned previously, force data were not obtained for the
bubble in the horizontally oriented tank because of the inaccessibility of the
bubble for this case., The tests were conducted primarily to obtain qualita-
tive indications of the behavior of a more representative system for the case
where a ullage bubble exists in the tank under low gravity. Of course, the
horizontal component of gravity was truly zero in this case. The feasibility
of the use of this arrangement for further studies of bubble behavior at sim-
ulated low gravity conditions was readily demonstrated. Quantitative natural
frequency data were obtained for the system experimentally and will now be
presented.
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The pressure distribution along the tank axis is shown in Figure 16
for the first two axisymmetric modes in this system where no bubble is
present in the tank. The free ends of the tank are reflected in the shape of
the pressure wave. Ideally, it would appear that these modes should be
symmetrical about the tank center. The distortion may have resulted
through the influence of the tank support and excitation system. These
pressure distributions, of course, correspond to those shown in Figure 7
for the vertically oriented, closed-open tank having a free surface.

The effect of bubble size and axial position on natural frequency is
shown in Figure 17 for the first mode only. Here also, it can be seen that
the presence of the bubble compliance has the least influence on the system
when the bubble is near the antinode of the undistorted pressure distribution.
Some idea of the distortion in the pressure wave can be obtained from
Figure 18, where the pressure nodal position is plotted against bubble axial
position, All measurements were made with the bubble on the centerline of
the tank.

With the system in the horizontal orientation, all sizes of captive
bubbles could readily be moved about to various axial locations in the tank,
depending on the excitational conditions. Acceleration inputs of as little as
0.05-g, could cause the bubbles to move for frequencies near a natural mode,
providing that the bubble was not initially located at an equilibrium position.
In general, the bubbles would move toward the points of increasing pressure
amplitude (against the pressure gradient), a result which fully agrees with
earlier observations in other systems., However, in this case where the
bubble was allowed to move, the natural frequency of the system would change
accordingly. Thus, under certain conditions, the bubble motion would
accelerate, from unstable positions for a constant input amplitude. It could
readily be seen that bubbles would tend to collect at definite locations in the
tank, depending on the input conditions. Similar behavior was also observed
qualitatively in this tank for random input conditions.
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V. DISCUSSION

The finite-bubble theory developed in the present work, in essence,
is an extension of previous results that have been developed for small
bubbles only. One complements the other in that each appears to give useful
results over different ranges of bubble size. Similar restrictions apply to
both theories, however, in that they are directly applicable only to axisym-
metric pressure distributions that can be expressed in terms of plane water-
hammer waves, and both are influenced by the theoretical bubble mode, the
true value of which remains uncertain. It is believed that, by including
surface tension effects, the results for small bubbles could be improved
considerably,

Recent work on axisymmetric modes of oscillation in tanks of repre-
sentative space vehicle geometry indicates that the plane wave pressure dis-
tribution assumption is not particularly good at liquid depths in the range
H/a < 2. In view of the methods required to solve even the simplified case
for a finite bubble size, it is obvious that extreme difficulty will be encountered
in developing a more accurate theory, and finite element numerical techniques
employing small mesh sizes will have to be used in the solution of the equations.
However, it appears that a complete prediction of bubble behavior under given
conditions of vibration can be obtained in no simpler fashion.

It should be emphasized that, to date, very little work has been
accomplished in studying bubble behavior in tanks that are vibrating in non-
axisymmetric modes. No work at all has been done for the case of bubbles
in a tank vibrating in nonlinear modes. Of course, a vehicle liquid-tank
system can respond in several types of modes, each of which probably will
cause different patterns of bubble migration. Even for the case of small
bubbles, the main problem appears to be in first predicting the pressure
distribution within the liquid, for whatever kind of mode the system may be
experiencing. This can be a formidable task itself, and the addition of finite
bubble size, then, further complicates the problem.

Upon comparing the present results of the small bubble and finite
bubble theories for axisymmetric responses, it appears that useful approxi-
mations can be obtained from the simpler theory for bubble sizes up to about
b/a = 0.05. This result is quite significant when it is realized that the limit
already represents a bubble of about 0.5-meter diameter in a tank of the
size of those used in an S-IC booster, In fact, a single bubble of that size
probably would not exist in a vibrational environment but would break up into
a cluster of smaller bubbles. However, according to Bleich's approximations,
the behavior of the cluster would be similar to that of a single large bubble
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of the same size. Obvicusly, bubbles or clusters of this size already are
large enough to be a hazard in the propulsion system of the vehicle.

The fact that bubbles can be moved about with random inputs, and
that low inputs are required under low gravity conditions is most significant.
This definitely points toward potential problems being caused by migrating
bubbles under orbital conditions. Again, however, the pressure response
in the tank must be considered in order to gain even a qualitative idea of the
bubble migration pattern. Unfortunately, the pressure response depends
greatly on the kind of excitaticn as well as how it is applied to the tank. In
other words, the effects of on-board noise sources in orbit must be evaluated.

Orienting an experimental tank horizontally appears to be a very good
way of simulating low gravity conditions under which to study longitudinal
migration of bubbles. Of course, the approximations involved in the use of
captive bubbles are inherent; however, much can be learned from more work
with such an apparatus. Bubble motion under either sinusoidal or random
inputs can readily be evaluated for excitational inputs at virtually any loca-
tion on the tank if suitable supporting fixtures are provided.

In general, it may be concluded that the present work has served to
point out the definite potential of bubble behavior as a problem under low
gravity conditions, and that a good knowledge of this behavior under various
environmental conditions can be gained only at the expense of considerably
more work, both theoretical and experimental,
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APPENDIX

l. Quasi-One-Dimensional Flow Equation

An equation for average flow will be determined for the region
occupied by the liquid. Consider cylindrical coordinates with origin located
in some cross section which cuts through the bubble in the tank as shown in
Figure A-1. Let the shaded area which includes the liquid only be

A=A, - Ay

In this region, the continuity equation applies

In order to consider the average flow through the shaded area, we may
integrate this equation to obtain

P p
op 4L f divﬁ‘dAZ-—Ii f divddA, = 0 (A1)
ot A A

A A)

Considering the cylindrical coordinates located at the center of A;
(either A] or Ay ), we may write

2T

2 .
f N Zm OR; Z)'Ra_)
aividai=| [ (rude + [ - ug=dian - [ (ugRit ) do
0 0 :

Ay 0

1 (A2)
where
q; = f udii
Aj
and
qQ=9, "9
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In order to evaluate the above integrals, we consider the boundaries
of the liquid. The shaded area of liquid is depeﬁdent on two geometrical
boundaries (1 and 2). In the specified cylindrical coordinate system, we can
write them as

Fi=r-Ri(6, x, t}=0

Since

dF; = 0F gr + L 3F 140 + 8F 4x
or r 86 Bx

the function F, increases along the normals which have direction cosines

- - - oR; o0R;
[cos (n;, r), cos (nj, 6), cos (nj, x)] =-é[, ——i- L - -—1]

where

A\ N2
G = 1+ (l__aRl) + <8R1\
r 96 ax /

From Figure A2, it can be seen that

ORy - owj
ot ot

Thus, as in Lamb [14], we may equate the normal velocity of the boundary (i)
to the normal velocity of the fluid at the boundary (i)

i = ———=———=Uu, COos (ﬁi. r) + ug cos (ﬁi, 8) + uy cos (ﬁi, X)

or

Thus, we may write Equation (A2) as

. 2 ow; ow;
f divudA; = f R; Y de = ZnRiT )
A 0

1
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so that Equation (Al) pecomes

p ow oW
o ,Proeg, , L (RZ_Z- Rl__1>: 0
ot A ox A ot ot

From Figure A-2, it can be seen that

8wl oA

—d- " Bginx , R;ZbsinxX
ot ot
and
ow
__.E = .QE R RZ = a
ot ot
Hence, we obtain
oA
dp . PL 8q PL( ow . 2 B)
L =Zioam—=(A-b —=1 =0
ot ' A ox O A at S X 5
2. Evaluation of Induced Buoyancy Force

The time average of the vertical force on a bubble in a vibrated
liquid (Fig. 1b) is

v
F=- 2176/' p(£)(b + Ap)? sin X cos X dX

By noting that
€1 =€ +8p cos X

and using the first two terms of the Taylor expansion,

p(£,) = p(£) +§g(él gy 4

and, noting that p(§) and A, are periodic in time, we may write

B
- T I "
F=- anAzdf P(£) cosX sin X dX - TrbZABdf %g cos® X sin X dX
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Now, note that
£ =Db cos X
and, from integration by parts, we have
i
m . b i 43
f B(€) cos X sin X dX = - > [f) cos? X:] - Ef sp-cos2 X sin X dX
0 0 0
and the average force may therefore be expressed as

F = - mbAg [p(b) - p(-b)]

and, nondimensionalizing, it becomes

F_ __3a%{~./by_=~./ by\| 2%
P1.BoVo- 4 p2 [p- (a) p” ( 3)] Ap (13a)
3. Numerical Solution for Natural Frequencies

A seminumerical procedure is employed in solving Equation (11).
For the assumed condition of plane-wave flow, the simple sine and cosine
solutions for the liquid column that are subject to the conditions

= K= _I__I
p* =0 at x¥ =3

a e Xowz

p‘,, = - cos wt at x¥ =0
ox* go

are, for below the bubble,

p* = K2 sin (R.x%) for x* <x7/a
where
2
E Xow wa
K5 = - y Qeg=—, x"=H-dp -b
2 Qego © Ce B

and, for above the bubble,

p* = K3 sin [Qe (x - H) ; H)] for x* >xt/a
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where

* + +
K3:p>:<(’ia)/;in Q. = aH}, xt = H-dg+b

These equations become boundary conditions for the bottom and top of the
bubble, respectively, and a numerical solution is now carried out for the
region including the bubble.

Using central difference formulas and taking net points at the centers
of each interval across the bubble region, Equation (11a) reduces to the
difference equation

Pn+1'ZPn+Pn—1+ DA [Pn+1’Pn-1]+ 1 2
2

A =0
2 A gxE A %2 Pn
N X Ceh
where
2 .2
X = woia
t 2
Co
and it is now understood that the pressures are nondimensional {(p*'s}. By

using N increments in the bubble region, the resulting N equations can be
expressed in matrix form as

{ia1 - 2183} 1P]=[c)
where

P1
P2

PN/

and [C] is a column matrix made up of the constants resulting from applying
the boundary conditions at £% = + b/a. [A] and [B] are square matrices.
For convenience in expressing the elements of these matrices, we define the
following quantities:
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A _ 1 pAx
Ap, n+ 15 VH+5Fn 5 Fn = xwgcx
A
Ah.n-lzl'an
Ap, n= -2
. N
By, n= " o,3
eB
where
A:ﬂ , Q :9_%_
aN e Ce

We now consider the elements of [A] and [B] for separate cases of n.
1) For 2 <n<N-1:

An,n+l=A1'1,n+l

Other elements are zero.
2) Forn=1:

A = Al

n, n+1l n, n+1
/ “\ |
. 1 += Qe tan \Qe%'\
An, n=An, n+ 5A}1,n-1) =
’ 1 - -—Qe tan(Qe-a—)

This is because
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S :
N 2
derived from
= _1_ b3 + 5
(P*) s = x=/a = 2 (PX +pY)
Ja H / X-
pl P0: (BD') _- e(P"‘)X = x-/a sSin KQ ?)
AT\ ox - [ x~
x* =x"/a cos \Qe'a')
xowz 1
- Z y —
o cos(\Qe T)
Bn, n= Bn, n

2
l—+AX°w - -
c,=(al .. __50_1 l} 24, tan(a X—)-!

( ’ 1) {_cos(Q £>J 2" .

Other elements are zero.

3) For n

N,

An, n- 1784 n-1

>
|

2
n, n‘Ar'l,n+ ( r'1,n+1)
1

This is because

T AQ + ‘ AQ + .
(PN+1)L1' T °°t(QeX—a_E>] =PN[I+ - C°t<Qe§‘_§ﬂ

derived from:
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PN+1‘PN_<8p*> _PNtPN+1
A ox* xx=xt/a 2

as pressure is zero at the liquid surface, x = H. And

All other elements are zero.

4. Numerical Solution for Induced Buoyancy Force

Equations (13) must be solved numerically using the same matrices

given above. However, we now specify a given excitational frequency (w),
hence a given \, and must solve Equations(11) forthe appropriate pressures
in the region occupied by the bubble. Thus, we must numerically solve

(Pl = {1a] - z2[B]} -1lc]

and the results are used to solve Equations (13a), (13b), and (13c) numeri-

cally.
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